BALANCE MODEL OF THE NEUTRALIZATION OF ACID WASTE WATER FROM CHEMICAL POLISHING OF GLASS

JAN BARTON

Research Institute of Utility Glass, Crystalex, Sklářská 403, 473 19 Nový Bor

Received 14, 4, 1992

The acid waste water, containing for the most part sulphuric, hydrofluoric and hexaftuorosilicic acids, is neutralized with an aqueous supension of technical-grade calcium hydroxide (milk of lime). The balance model allows the capacity of interoperation tanks and that of the neutralization reactors to be calculated. The waste water is produced by rinsing chemically polished glass ware with water. The effect of the number of interoperation rinses on the production of acid waste water and on the capacity of interoperation tanks is demonstrated. The model is suitable for small waste water neutralizing stations whose design in this country has till recently been a purely empirical matter. Correct operation of such plants is an indispensable prerequisite for environmental protection of the neighbourhood of glass polishing shops where acid waste water is produced.

INTRODUCTION

Neutralization of acid waste water from chemical polishing of glass is the basic chemical operation in the process of disposal of the respective harmful substances arising in the operation. Technical-grade calcium hydroxide in the form of the milk of lime is curently used as the neutralizing agent. The neutralizing reactions yield the so-called neutralization sludge. The actual neutralization of the acid waste water, containing dissociated mineral acids as its main components (H₂SO₄, HF and H₂SiF₆), can be described by the following schematic equations:

$$H_2SO_4 + Ca(OH)_2 \rightarrow CaSO_4 + 2 H_2O$$
 (1)

$$2 \text{ HF} + \text{Ca}(\text{OH})_2 \rightarrow \text{CaF}_2 + 2 \text{ H}_2\text{O}$$

$$H_2SiF_6 + 4 Ca(OH)_2 \rightarrow CaSiO_3 + 3 CaF_2 +$$

+ 5 H_2O .

The acid waste water arises by passage of the polishing bath, containing the acids mentioned above, into the water used in rinsing the polished glass. Chemical polishing of lead glass results in the dissolution of a surface layer of the ware, approximately $100\,\mu\mathrm{m}$ in thickness, yielding water-soluble, poorly soluble and virtually insoluble salts. The insoluble salts constitute the so-called primary sludge.

THEORY

In designing the neutralizing station, one has first to determine the capacity of interoperation tanks, reactors and the sludge separating equipment (filterpress, centrifuge). The way of separating the sludge depends, among others, on the possibility of utilizing it as a secondary raw material. The choice of a suitable neutralization reactor, either for continuous or

discontinuous operation, is also significant. The kinetics of neutralization of dilute sulphuric acid with the milk of lime is affected, among other factors, also by the compostion of the technical-grade hydrated lime, in particular by its content of carbonate. A study of the course of neutralization of acid waste water in an industrial mixed reactor with a capacity of 6 m³ showed that a batch can be neutralized within about 2 hours. The mean time of residence during neutralization of acid waste water in a continuous industrial mixed rector of 10 m3 capacity was established at 1.5 hour. Attainment of stoichiometric consumption of the hydrated lime also depends on the way the equivalence point is indicated. At many small neutralizing stations, the pH has so far been measured with pH indicating papers instead of using precise instrumentation, with the result that the waste water has mostly a distinctly alkaline reaction.

A schematic diagram of a neutralizing station is shown in Fig. 1. It is assumed that the acid waste water is produce continuously. The Z₁interoperation

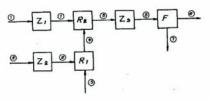


Fig. 1. Schematic diagram of a neutralizing station. Î – acid water, 2 – lime, 3 – fresh water, 4 – milk of lime, 5 – neutralization sludge, 6 – waste water, 7 – filter cake, Z₁ – acid water tank, Z₂ – powder lime bin, Z₃ – neutralization sludge tank, R₁ – tank for preparation of milk of lime, R₂ – neutralization reactor, F – filterpress.

Table I

Dependent (Y) and independent (X) values of the balance model

/ariable Unit Description					
X ₁	1	weight fraction of solid phase in milk of lime			
Y2	kg m ⁻³	density of milk of lime			
Y3	density of acid water				
X ₄	kg m ⁻³	weight fraction of H2SO4 in acid water			
Ys					
X_7	d-1	number of shifts			
Ys	m3 d-1	volume flow of milk of lime			
		weight fraction of HF in acid water			
X_{10}	1 d	time of operation from lime stock in Z ₂			
XII	capacity of lime tank Z2				
Y ₁₂	kg	material flow through reactor R ₂			
Y_{13}	kg d ⁻¹				
Y_{14}	kg d ⁻¹	material flow of dry neutralization sludge			
Y_{15}	kg d ⁻¹	material flow of moist neutralization sludge (filter cake)			
Y_{16}	1	weight fraction of free water in filter cake			
Y_{17}	kg d ⁻¹	material flow of waste water			
Y_{18}	kg h ⁻¹	output of filter press in material flow of filter cake			
X_{19}	h	time of filtration per shift			
Y_{20}	m^3	volume of continuous reactor R2			
X_{21}	h	mean residence time in continuous reactor R2			
Y_{22}	m ³	volume of batch reactor R ₂			
Y_{23}	m ³	volume of batch reactor R ₁			
Y_{24}	kg h ⁻¹	output of filterpress - filtrate			
X_{25}	kg	weight of glass polished in one operation			
X_{26}	1	weight fraction of K2O in glass			
X_{27}	1	weight fraction of Na ₂ O in glass			
X28 1		weight fraction of glass transferred to polishing bath			
X_{29}	1	weight fraction of PbO in glass			
Y_{30}	kg d-1	material flow of polishing sludge from glass polished (mainly PbSO4			
X_{31}	1	number of rinses of glass during polishing process			
X_{32}	kg	weight of acid water from one rinse			
Y33	$kg d^{-1}$	material flow of acid water to neutralization process			
X_{34}	min	polishing time			
X_{35}	min	rinsing time			
Y36	d^{-1}	number of polishing operations			
Y37	kg d-1	material flow of glass polished			
Y38	1	weight fraction of CaF2 in dry neutralization sludge			
Y39	1	weight fraction of CaSiO3 in dry neutralization sludge			
Y40	m ³	volume of tank Z ₃			
X41	h	mean residence time in tank Z ₃			

tank serves as a surge tank for acid water to be neutralized. The capacity of tank Z_2 determines the stock of the milk of lime for the neutralizing station. Reactor R_1 for the preparation of milk of lime is usually of the discontinuous type. Its capacity can be determined according to the consumption of lime per shift, etc. The neutralizing reactor, R_2 , may be continuous or discontinuous; its capacity depends on the type. Interoperation tank Z_3 for neutralization sludge suspension equalizes the throughputs of neutralization reac-

tor R₂ and filter F, possibly has to meet additional technological requirements, and serves as a sludge settling tank.

Balance model of the neutralizing station

The model is based on a weight balance of the system supplemented with stoichiometry of the neutralizing reactions and dissolution of glass. Table I lists

the variables of the balance model. There are two types of the variables : independent ones (model input values) and dependent ones (model output values). Quantity X7 given in Table I specifies the utilization rate of the neutralizing station on the assumption of 8 hours per shift. Input quantity X_{11} determines the capacity of the hydrated lime storage bin for the given time of requested pre-stocking. Input quantity X_{19} specifies the net time of filtering the sludge suspension per shift. Quantity X28 expresses the amount of glass passed dissolved in the polishing bath and eventually passed into the acid water by the polishing process. Quantity X34 gives the time of polishing including the time of handling the glass products.

The balance model comprises the following equations:

$$Y_2 = (100X_1 + 154.37)/0.15558$$
 (4)

(5)

$$Y_3 = 734.79X_4 + 994.3$$

$$Y_5 = Y_{33} (32 - 8X_7) / 24Y_3$$

$$Y_8 = Y_{33} \left(X_4 M_1 / M_2 + X_9 M_1 / 2 M_3 + \right)$$

$$+X_{10}4M_1/M_7$$

$$Y_{12} = X_{11}Y_8$$

$$Y_{13} = Y_{33} + Y_8 Y_2 \tag{9}$$

$$Y_{14} = Y_{33}(X_4M_6/M_2) + X_9M_5/M_2 +$$
 (10)
+ $X_{10}(3M_5 + M_4)/M_7$

$$Y_{15} = Y_{14}/(1 - X_{16}) \tag{11}$$

$$Y_{17} = Y_{33} (1 - (X_4 + X_9 + X_{10})) + (1 + Y_8 Y_2 (1 - X_1) - Y_{15} X_{16})$$

$$Y_{18} = Y_{15}/(X_{19}X_7) \tag{1}$$

$$Y_{20} = (Y_{33}/Y_3 + Y_8) X_{21}/8X_7$$
 (14)

$$Y_{22} = (Y_{33}/Y_3 + Y_8)/X_7$$
 (15)

$$Y_{23} = Y_8/X_7$$
 (16)

$$Y_{24} = Y_{13}/(X_7X_{19}) - Y_{18} (17)$$

$$Y_{30} = Y_{37}X_{28} \left(X_{26}M_8/M_{10} + X_{27}M_9/M_{11} + \right)$$
 (18)

$$+X_{29}M_{12}/M_{13}$$
)

$$Y_{33} = Y_{36}X_{31}X_{32} (19)$$

$$Y_{36} = 8X_7/((X_{31}X_{35} + X_{34})/60)$$
 (20)

$$Y_{37} = Y_{36}X_{25} (21)$$

$$Y_{38} = Y_{33} (X_9 M_5 / 2 M_3 + X_{10} 3 M_5 / M_7) / Y_{14}$$
 (22)

$$Y_{39} = Y_{33} \left(X_{10} M_4 / M_7 \right) / Y_{14} \tag{23}$$

$$Y_{40} = (Y_{33}/Y_3 + Y_8) X_{41}/8X_7 \tag{24}$$

According to equation (6), the capacity of interoperation acid water tank Z_1 is calculated so that at single-shift operation of neutralization the Z_1 tank be capable of accommodating the entire one-day production of acid water; at three-shift operation, the accumulating capacity of tank Z_1 should be equivalent to one-shift production of acid water. The capacity of discontinuous reactor Y_{22} is calculated for processing the aliquot proportion of daily acid water production in a single charge. Because the time of neutralizing one charge (2 hours) is shorter than the length of one shift, a reserve in the capacity of the neutralization reactor is available.

The capacity of the continuous reactor is considered for a mean residence time $X_{21} = 3$ hrs., which again represents an output reserve of the reactor. The capacity of interoperation tank Z_3 , calculated from

equation (24), is given by the requirement for the mean time of residence of the sludge suspension, X₄₁.
 Using equations (23) and (19), the capacity of filter F is calculated on the assumption that all of the liquid phase passed through the neutralization reactor

Table II
Input values of the blance model – accuracy \pm 5%, relative

Variabl::	Value	Unit
X ₁	0.15	1
X_4	0.08	1
X7	2 '	1
X9	0.001	1
X10	0.001	1
X_{11}	14	d
X16	0.23	- 1
X19	4	h
X21	3	h
X25	100	kg
X26	0.123	1
X27	0.019	1
X28	0.05	1
X29	0.24	1
X_{31}	1	1
X32	300	kg
X34	50	min
X35	5	min
X41	5	h

Table III
Output values of the balance model

Variable Value Unit Accuracy ± %, rel. kg m⁻³ 1087 0.4 kg m⁻³ Y3 1053 0.3 m^3 Y5 7.3 2.8 Y_8 1.7 11.4 111 kg 3986 11.2 Y12 kg d-1 9.1 6329 Y_{13} kg d-1 Y14 641.5 10.1 Y15 833.1 kg d 10.2 $kg d^{-1}$ Y17 5489 9.1 $kg h^{-1}$ Y_{18} 104.1 10.2 m^3 9.1 Y_{20} 1.1 m^3 7.6 2.9 Y22 m^3 0.87 10.3 Y_{23} $kg h^{-1}$ 687 9.1 Y24 kg d-1 Y30 49.6 9.7 kg d-1 Y33 4431 8.9 5.7 Y36 14.8 kg d-1 1480 7.6 Y37 Y38 0.025 5.9 6.9 Y39 0.005 1 m3 9.1 1.86 Y40

is filtered. The balance model was resolved by means of the KOMAT program [3,4] which is capable of determining the accuracy of dependent variables on the basis of the accuracy of input values.

PRACTICAL EXAMPLE

Table II lists the values of input variables for the balance calculation. The values indicate that the initial concentration of solid phase in the milk of lime amounts to 15 wt.%, the acid waste water contains 8 wt.% H₂SO₄, 0.1 wt.% HF and 0.1 wt.% H₂SiF₆. The glass being polished contains 24 wt.% PbO, 12.3 wt.% K₂O and 1.9 wt.% Na₂O. The rinsing operation yields 300 kg of acid water. The shift rate X₇ = 2, that is 16 hours of operation of the neutralizing station daily.

Table III gives the results of balance calculation using the input quantities from Table II. Table III shows that the daily production amounts to 4431 kg of acid water and 641.5 kg of dry neutralization sludge or 833.1 kg of this sludge containing 23 wt.% of free water. The total daily production of waste water from neutralization is 5489 kg and that of dry matter of primary sludge is 49.6 kg.

Table IV lists the capacity and throughput parameters of the individual items of equipment of the neu-

Table IV

Capacity and output parameters of the basic components of the neutralizing station

Symbol of component	Capacity	Output	
Z ₁ Z ₂ Z ₃ R ₁ R ₂ continuous R ₂ batch	2.8 m ³ 3986 kg 1.86 m ³ 9.87 m ³ 1.17 m ³ 2.98 m ³	104.1 kg h ⁻¹ of filter cake 687 kg h ⁻¹ of filtrate	

a) production of acid water 4431 kg d-1

 $Table \ V$ Influence of X_{34} on the parameters of the neutralizing station

	X_{31}			
Parameter	1	2	2.5	
Y ₃₀ kg d ⁻¹	4431	8229	9931	
Y ₁₅ kg d ⁻¹	833	1547	1867	
Y ₃₇ kg d ⁻¹	1480	1370	1324	
$Y_{30} \text{ kg d}^{-1}$	50	46	44	
$Z_1 m^3$	2.8	5.2	6.3	
Z ₂ kg	3986	7400	8934	
$Z_3 m^3$	1.9	3.5	4.2	
R ₁ m ³	0.87	1.62	1,96	
Ro m3 batch	3	5.5	6.7	
R ₂ m ³ cont.	1.2	2.1	2.5	
F kg h-1 filter cake	104	193	233	
F kg h-1 filtrate	687	1276	1540	

tralizing station. The number of rinses of the polished glass affects decisively the production of waste polishing water. One rinse represents the technology of polishing glass without intermediate rinsing, that is using a single rinse after the chemical polishing. Two rinses correspond to one intermediate rinse and one rinse after polishing, etc. Table V illustrates the effect of the number of rinses (parameter X_{31})

R

d

day

on the technological parameters, capacity dimensions and throughput of the neutralization facilities on the assumption of a constant composition of the acid water. Generally, parameter X_{31} may acquire arbitrary values, but practically only positive integers. Table V demonstrates that with increasing X_{31} , the production of acid water increases, that of acid water (Y_{37}) decreases and the capacity demands on storage tanks and reactors grow.

CONCLUSION

The present study was concerned with a neutralizing station model based on a weight balance of the system. In view of the fact that neutralization of acid waste water from polishing is a part of a complete system designed for reducing or eliminating the toxicity of waste materials produced by chemical polishing of glass, a balanced and proportional design of all items of the station is a necessary prerequisite for maintaining ecological safety of the operation. As the technical and technological standard of a number of neutralizing stations is quite poor, in particular in the case of small works, their ecological safety is likewise unsatisfactory. The present paper should therefore draw attention to the necessity of subjecting the small and so far underestimated neutralizing stations to careful chemico-engineering analyses. Following adjustments according to the specific local conditions, the ballance model described may be applied to any arbitrary process involving neutralization of acid waste water containing acids which form insoluble sludge with calcium hydroxide.

List of symbols

 $\begin{array}{lll} F & - & \text{filterpress} \\ M_1 & - & \text{molecular weight} \\ \text{i} & = & 1 - \text{Ca}(\text{OH})_2, 2 - \text{H}_2\text{SO}_4, 3 - \text{HF}, \\ & 4 - \text{CaSiO}_3, 5 - \text{CaF}_2, 6 - \text{CaSO}_4.2\text{H}_2\text{O}, \\ \end{array}$

 $\begin{array}{l} 7 - II_2SiF_{6}, 8 - K_2SiF_{6}, 9 - Na_2SiF_{6}, \\ 10 - K_2O, 11 - Na_2O, 12 - PbSO_4, \\ 13 - PbO \\ \text{reactor} \\ \text{tank} \end{array}$

References

- [1] Kaiser A.: Glastech, Ber. 69, 127 (1989).
- [2] Vacek M.: Sklář a keramik 39, 321 (1989).
- [3] Madron F.: Chem. prům. 35, 337 (1985).
 [4] Madron F.: Chem. prům. 35, 517 (1985).
 - Translated by K. Němeček

BILANČNÍ MODEL NEUTRALIZACE KYSELÉ VODY Z CHEMICKÉHO LEŠTĚNÍ SKLA

JAN BARTON

Výzkumný ústav užitkového skla, závod 6, Crystalex s.p. 473 19 Nový Bor

Kyselá voda obsahující kyselinu sírovou, fluorovodíkovou a hexafluorokřemičtiou je neutralizována suspenzí technického hydroxidu vápenatého ve vodě. Modelem lze stanovit kapacitu mezioperačních zásobníků a kapacitu neutralizačního reaktoru. Zdrojem kyselé vody je oplachování leštěných skleněných výrobků vodou. Je ukázán vliv počtu mezioplachů na produkci kyselé vody a na kapacitu mezioperačních zásobníků. Model je vhodný pro malé neutralizační stanice kyselých vod, jejichž projektování bylo v naších podmínkách ještě zcela nedávno založeno na empirii; přitom správná funkce malé neutralizační stanice je důležotou podmínkou ochrany životního prostředí v okolí malých průmyslových zdrojů kyselých vod.

Obr. 1. Schéma neutralizační stanice.

1-kyselá voda, 2-vápenný hydrát, 3-voda užitková, 4vápenné mléko, 5-neutralizační suspenze, 6-odpadní voda, 7-neutralizační kal, Z₁-zásobník kyselé vody, Z₂-zásobník práškového vápenného hydrátu, Z₃zásobník suspenze z neutralizace, R₁-reaktor na výrobu vápeného mléka, R₂-neutralizační reaktor, Ffiltrační zařízení.